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 Recent progress in NGS technology has afforded 
several improvements
 ultra-high throughput at low cost, 
 very high read quality, and 
 substantially increased sequencing depth
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The genomic NGS data



 Illumina MiSeq system can generate ~15 Gbp per run, 
 with >80% bases above Q30 and 
 a sequencing depth of up to several 1000x for small 

genomes. 

 Illumina HiSeq 2500 can generates up to 1 Tbp per run, 
 with >80% bases above Q30 and 
 often >100x sequencing depth for large genomes
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State-of-art NGS sequencers



 Time-consuming and resource-demanding assembly
 The ALLPATHS-LG assembly took 50+ days to assemble the 125G-bp grouper 

data (~110x depth) on a machine of 32 cores and 1TB RAM
 The long analysis is a nightmare 

 When you want to try multiple sets of parameters 
 When power failure happens

 The more depth of NGS data, the better assembly results?
 More redundancy of sequences

 Adv: will help fixing errors & have more chance to close gaps
 Disadv: will also have larger number errors in wider regions

 More chance to form complex error patterns that cannot be solved by assemblers
 Of course more time-consuming & resource-demanding

 How to reduce the disadvantages while retaining the advantages?
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To assemble the high-depth NGS data



 Idea: 
 Select high-quality reads to assemble into skeleton for 

further processing
 Lower redundancy to speed up genome assembly

 E.g., 110x  50x

 Can achieve almost equal or better assembly results

 Low-quality reads are used later in the workflow
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Read subset selection 
for high-depth NGS data
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Genome assembly workflows
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 MinimalQ strategy identifies the minimal quality value of 
each read, and
 sets a threshold of selecting reads with minimal quality value 

no smaller than the threshold
 Keep reads with MinimalQ t as the selected subset

 Assumption: reads with very low MinimalQ values are likely to 
cause mis-assemblies

 MinimalQ of paired-end reads
 MinimalQ of PE = min(MinimalQ of read1, MinimalQ of read2)

 Both reads with MinimalQ ≥ t 

8

The MinimalQ strategy



 Bases’ quality
 Peak: 35 (y: 36%)

 PEs’ Min. quality value
 Peak: 8 (y: 15%)
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Statistics of minimal quality value for 
the PEs in the grouper dataset
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 Dataset: the giant grouper dataset of HiSeq
 Selection strategy: MinimalQ
 Assembler: ALLPATHS-LG
 Evaluation: QUAST quality assessment tool

10

Experiments of PE subset selection



 Step 1: 
 A 50% subset of PEs was selected using MinimalQ strategy

 Use MQV-21
 Step 2: 

 ALLPATHS-LG assembler was used to obtain contigs and 
scaffolds 

 5 mate-pair libraries, with insert lengths ~2K, ~4K, ~6K, ~8K, 
~10K bp, were used  for both the original and selected datasets 
 The size of each mate-pair library is ~4.4G bp

 Step 3: 
 The results were evaluated using QUAST assessment tool  
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Experimental steps for PEs



Original dataset Selected subset

Dataset characteristics

Dataset size (G bp) 125 63

# read pairs 319,878,932 158,651,599

Mean length of reads 195.3 198.6

%GC content of reads 41.0% 39.7%

Results of contigs

# contigs 39,911 53,488

Total contig length 996,203,993 991,109,739

N50 contig size (K bp) 82.2 43.5 12

Comparing the assembly results of 
PE subset selection for the grouper dataset



Original dataset Selected subset

# scaffolds 3,917 4,043

Total scaffold length 1,076,396,971 1,062,462,514

Largest scaffold length 12,701,604 21,777,629

N50 scaffold size (K bp) 

( L50 number)

3,354

(97 scaffolds)

5,443

(61 scaffolds)

N75 scaffold size (K bp) 

(L75 number)

1,429

(218 scaffolds)

2,493

(131 scaffolds)

%GC of scaffolds 41.23% 41.17%

# ‘N’s 79,902,759 71,510,549

# ‘N’s per 100K bp 7,423.10 6,730.57

# scaffolds for 1G bp 3 482 304 13

Results of scaffolds
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QUAST results: cumulative length, GC%
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QUAST results: Nx plot



 The original dataset
 ALLPATHS-LG took 50+ days

 on a machine of 32 cores and 1TB RAM
 Peak RAM usage: ~600GB

 The selected subset
 ALLPATHS-LG took 7.2 days

 on a machine of 40 cores and 1.5TB RAM
 Peak RAM usage: ~390GB

 PE subset selection took ~2 hr
 on a 10-node Hadoop cluster
 Open source software

 https://github.com/moneycat/QReadSelector
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Runtimes of the two ALLPATHS-LG 
assemblies
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Eel genome assemblies by 
Trim+[Select]+ALP+SS+GC  workflow

Eel Original dataset Selected subset

Dataset 
size

135 G bp 49 G bp

Total 
scaffold 
length

333 M bp 1028 M bp

Largest 
scaffold 
length

1,762,478 9,640,288

N50 
scaffold 
size

33,149 1,400,053

33,149 

5,152,596

1,400,053 

8,186,786

Eel Grouper

N50 Scaffold Size

Original dataset Selected subset



 Suitable for genome assembly of high-depth NGS data
 Suggest to select reads with at least 50x coverage depth

 we suggest determining the initial subset sizes by sufficient coverage depths. 
 Desai et al [1] suggest that 50x data is enough to get good genome coverage for 

assemblies of small and moderate sized genomes
 For large genomes,  we suggest to initial at 50x-60x

 Suitable for genome assembly with multiple PE & MP libraries
 If the dataset has only one or two PE, the gain of scaffolding would become inferior.

 Suitable for datasets with good quality
 poor-quality datasets  right-skewed MinimalQ distribution

 Most reads have low MinimaQ (say MinimalQ < Q15)
 The read length also affects MinimalQ values
 We provide a new read subset selection method %HighQ(x)
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Guidelines for applying MinimalQ
strategy to your datasets

[1] Desai et al. Identification of Optimum Sequencing Depth Especially for De Novo Genome Assembly of 
Small Genomes Using Next Generation Sequencing Data. PLoS One. 2013.





 can be specified a
 i.e., 100% of bases with quality values 

 You can also specify  95
 i.e., 95% of bases with quality values 

 Guideline:
 Make sure the dataset is high-depth and has multiple PE & MP
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Read subset selection by 
high-quality percentage



 Step0. Put read1, read2 fastq files in a folder, e.g., C:\data
 Step1. Probe the quality distribution of PE reads

 Usage: peQdist read1.fq read2.fq out.csv
 Windows 8+ edu/pro/… (needs DOCKER for windows)

 > docker run -v C:\data:/data abnerchang/subset /ngs/peQdist
/data/read1.fq /data/read2.fq /data/out.csv
 PS. The system auto-downloads the docker image for the 1st time.

 Linux
 $ sudo docker run -v /data:/data abnerchang/subset /ngs/peQdist

/data/read1.fq /data/read2.fq /data/out.csv

 Step2. Check the quality distribution and determine the thresholds
 Say MinmalQ ≥ 21, %HighQ(20) ≥ 98.5
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Software demonstration (1/2)



 Step2. Select the high-quality subset of PE reads
 Usage: peQselect r1.fq r2.fq outPrjName %HighQ  [QTh]

 QTh: threshold x of quality value; default 20; range [0..41]
 Output: <outPrjName>-r1.fq, <outPrjName>-r2.fq

 Windows
 MinimalQ 21

 > docker run -v C:\data:/data abnerchang/subset /ngs/peQselect
/data/read1.fq /data/read2.fq /data/subsetMinQ-21 100 21

 %HighQ(20) 98.5
 > docker run -v C:\data:/data abnerchang/subset /ngs/peQselect

/data/read1.fq /data/read2.fq /data/subsetHiQ-98.5 98.5
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Software demonstration (2/2)
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 Software
 https://hub.docker.com/r/abnerchang/
 Welcome to give comments/suggestions to 

yjchang@iis.sinica.edu.tw

Thank You!
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