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The genomic NGS data

* Recent progress in NGS technology has afforded
several improvements

* ultra-high throughput at low cost,
+ very high read quality, and
* substantially increased sequencing depth



State-of-art NGS sequencers

* |llumina MiSeq system can generate ~15 Gbp per run,
* with >80% bases above Q30 and

* a sequencing depth of up to several 1000x for small
genomes.

* |llumina HiSeq 2500 can generates up to 1 Tbp per run,
* with >80% bases above Q30 and
+ often >100x sequencing depth for large genomes



To assemble the high-depth NGS data

* Time-consuming and resource-demanding assembly
* The ALLPATHS-LG assembly took 50+ days to assemble the 125G-bp grouper
data (~110x depth) on a machine of 32 cores and 1TB RAM
* The long analysis is a nightmare
* When you want to try multiple sets of parameters
* When power failure happens
* The more depth of NGS data, the better assembly results?
* More redundancy of sequences
* Adv: will help fixing errors & have more chance to close gaps

* Disadv: will also have larger number errors in wider regions
** More chance to form complex error patterns that cannot be solved by assemblers
* Of course more time-consuming & resource-demanding

* How to reduce the disadvantages while retaining the advantages?



Read subset selection

for high-depth NGS data

* |dea:
+ Select high-quality reads to assemble into skeleton for
further processing

* Lower redundancy to speed up genome assembly
* E.g., 110X = 50X
* Can achieve almost equal or better assembly results

* Low-quality reads are used later in the workflow



Genome assembly workflows

Typical workflow e.g., New workflow
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The MinimalQ strategy

* MinimalQ strategy identifies the minimal quality value of
each read, and

* sets a threshold of selecting reads with minimal quality value
no smaller than the threshold

* Keep reads with MinimalQ >t as the selected subset

* Assumption: reads with very low MinimalQ values are likely to
cause mis-assemblies

* MinimalQ of paired-end reads

* MinimalQ of PE = min(MinimalQ of read1, MinimalQ of read2)
* Both reads with MinimalQ >t



Statistics of minimal quality value for

the PEs in the grouper dataset
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Experiments of PE subset selection

« Dataset: the giant grouper dataset of HiSeq
+ Selection strategy: MinimalQ

* Assembler: ALLPATHS-LG

* Evaluation: QUAST quality assessment tool
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Experimental steps for PEs

* Step 1t
* A 50% subset of PEs was selected using MinimalQ strategy
+ Use MQV-21
* Step 2:

* ALLPATHS-LG assembler was used to obtain contigs and
scaffolds

* 5§ mate-pair libraries, with insert lengths ~2K, ~4K, ~6K, ~8K,
~10K bp, were used for both the original and selected datasets
** The size of each mate-pair library is ~4.4G bp
* Step 3:
* The results were evaluated using QUAST assessment tool
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Comparing the assembly results of
PE subset selection for the grouper dataset

-_ Original dataset |Selected subset

- Dataset size (G bp)
- # read pairs 319,878,932
- Mean length of reads 195.3
- %GC content of reads 41.0%

125

39,911
996,203,993

82.2

- N50 contig size (K bp)

63

158,651,599
198.6

39.7%

53,488
991,109,739
435 2



Results of scaffolds

_ Original dataset |Selected subset _

- # scaffolds 3,917 4,043

Total scaffold length 1,076,396,971 1,062,462,514

Largest scaffold length 12,701,604 21,777,629

N50 scaffold size (K bp) 3,354 5,443
( L5so number) (97 scaffolds) (61 scaffolds)

N75 scaffold size (K bp) 1,429 2,493
(L75 number) (218 scaffolds) (131 scaffolds)
%GC of scaffolds 41.23% 41.17%
. #‘N’s 79,902,759 71,510,549
. # ‘N’s per 100K bp 7,423.10 6,730.57

. # scaffolds for 1G bp 3 482 304 °



QUAST results: cumulative length, GC%

Plots: Cumulative length Nx GC col Normal / logarithmic scale
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Figure S6. Comparison of the cumulative length of scaffolds. The x-axis denotes the
top x long scaffolds (ordered from largest (scaffold #1) to smallest). The y-axis
denotes their cumulative length. The original dataset uses blue curve; the selected

subset uses red curve
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QUAST results: Nx plot

Plots: Cumulative length Nx GC content Normal / logarithmic scale

Nx = 25 Mbp

20

15

10

0

0 10 20 30 40 50 60 70 80 90 x = 100%

Figure S7. Comparison of Nx of scaffolds. Nx (where 0<x<100) 1s the largest scaffold

length, L, such that using contigs of length > L accounts for at least x% of the bases of

the assembly. The original dataset uses blue curve; the selected subset uses red curve. &



Runtimes of the two ALLPATHS-LG

assemblies

* The original dataset

*  ALLPATHS-LG took 50+ days
*on a machine of 32 cores and 1TB RAM
* Peak RAM usage: ~600GB
* The selected subset

* ALLPATHS-LG took 7.2 days
* on amachine of 40 cores and 1.5TB RAM
* Peak RAM usage: ~390GB
* PE subset selection took ~2 hr
* ona10-node Hadoop cluster

* Open source software
* https://github.com/moneycat/QReadSelector
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Eel genome assemblies by

Trim+[Select]+ALP+SS+GC workflow

N50 Scaffold Size

Dataset

size 135G bp 49 Gbp 8,186,786
5,152,59
333 M bp 1028 M bp
1,400,053
Largest
33,149
scaffold 1,762,478 9,640,288 -

length Eel Grouper
N50

scaffold 33,149 1,400,053 M Original dataset M Selected subset
size
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Guidelines for applying MinimalQ

strategy to your datasets

* Suitable for genome assembly of high-depth NGS data

%k

Suggest to select reads with at least 50x coverage depth
* we suggest determining the initial subset sizes by sufficient coverage depths.

« Desai et al [1] suggest that 50x data is enough to get good genome coverage for
assemblies of small and moderate sized genomes

* For large genomes, we suggest to initial at 50x-60x

* Suitable for genome assembly with multiple PE & MP libraries

%k

If the dataset has only one or two PE, the gain of scaffolding would become inferior.

* Suitable for datasets with good quality

*

poor-quality datasets = right-skewed MinimalQ distribution

*  Most reads have low MinimaQ (say MinimalQ < Q15)

The read length also affects MinimalQ values

=» We provide a new read subset selection method %HighQ(x)

[1] Desai et al. Identification of Optimum Sequencing Depth Especially for De Novo Genome Assembly of 8
Small Genomes Using Next Generation Sequencing Data. PLoS One. 2013.



Read subset selection by

high-quality percentage

#bases with quality value = x

0/ H i —
i /OnghQ (X) #bases of aread
* MinimalQ = x canbe specified as %HighQ(x) = 100
* i.e., 100% of bases with quality values = x

* You can also specify %HighQ(20) = 95
* i.e., 95% of bases with quality values = 20

* Guideline:
* Make sure the dataset is high-depth and has multiple PE & MP
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Software demonstration (1/2)

* Stepo. Put read1, read2 fastq files in a folder, e.g., C:\data

* Step1. Probe the quality distribution of PE reads
* Usage: peQdist read1.fq read2.fq out.csv
*  Windows 8+ edu/pro/... (needs DOCKER for windows)

* > docker run -v C:\data:/data abnerchang/subset /ngs/peQdist
/data/read1.fq [data/read2.fq [data/out.csv

* PS. The system auto-downloads the docker image for the 15t time.
*  Linux

* § sudo docker run -v /[data:/data abnerchang/subset /ngs/peQdist
/data/read1.fq /data/read2.fq [data/out.csv

* Step2. Check the quality distribution and determine the thresholds
# Say MinmalQ > 21, %HighQ(20) > 98.5
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Software demonstration (2/2)

* Step2. Select the high-quality subset of PE reads
« Usage: peQselect r1.fq r2.fq outPrjName %HighQ [QTh]
# QTh: threshold x of quality value; default 20; range [0..41]
* Qutput: <outPrjName>-r1.fq, <outPrjName>-r2.fq
* Windows
* MinimalQ = 21

* > docker run -v C:\data:/data abnerchang/subset /ngs/peQselect
/data/read1.fq /data/read2.fq /data/subsetMinQ-21100 21

# %HighQ(20) = 98.5

* > docker run -v C:\data:/data abnerchang/subset /ngs/peQselect
/data/read1.fq /data/read2.fq /data/subsetHiQ-98.5 98.5
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Thank You!
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* Software
* https:/[hub.docker.com/r/abnerchang/

*  Welcome to give comments/suggestions to
yjchang@iis.sinica.edu.tw
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