Multi-Omics onLine Analysis System for Profiling Gene Expression

Life Science Library Training Course 2018/12

Chen, Shu-Hwa

IIS, Academia Sinica

Read in FastQ format

https://en.wikipedia.org/wiki/FASTQ_format

DON'T TRY TO OPEN a fastq file on your desktop PC

@<instrument>:<run number>:<flowcell ID>:<lane>:<tile>:<x-pos> <read>:<is filtered>:<control number>:<index sequence>

Illumina Technology

Check the Quality of Reads

Trimming for base quality

10

20

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Phred Quality Score Probability of incorrect base call Base call accuracy

90%

99%

1 in 10

1 in 100

Read Preprocessing (optional):

Trimming for adapter contamination

Modified from figure2. http://journal.frontiersin.org/article/10.3389/fgene.2014.00005/full

Mapping: the Options

Mapping to a Known Genome

- Working on the target species: to profile the gene repertoire on a well-defined reference genome (fully sequenced and annotated).
- Using a known genome close to your sample.

de novo Assembling + Mapping

- Create the reference (transcriptome or genome) by assembling.
- Annotate the new assembled reference.
- Map reads to the new assembled reference.

GTF: the Gene Tranfer Format

1 ensembl_havana transcript 4344146 4360314 . - . gene_id "ENSMUSG000000259 00"; gene_version "6"; transcript_id "ENSMUST0000027032"; transcript_version "5"; gene_name "Rp1"; gene_ source "ensembl_havana"; gene_biotype "protein_coding"; transcript_name "Rp1-001"; transcript_source "ens embl_havana"; transcript_biotype "protein_coding"; tag "CCDS"; ccds_id "CCDS14804";

Read Mapping

Reference Genome

- Seq: fasta file / prebuilt index
- Annotation : gtf / gff file

Expression Level by Gene or by Transcript?

Normalization is a Necessary Evil

• Between samples:

Initial Input ; Volume of Reads

Library 1: 12M reads

• Within sample:

transcript length effect

Count the mapped read number, normalized to library size

cpm: count per million reads

- Count the mapped read number, normalized to BOTH library size and (target seq) length
 - ✓ **TPM:** transcripts per million reads
 - ✓ **RSEM:** RNA-Seq by Expectation-Maximization
 - ✓ RPKM: reads Per kilobase of exon per million mapped reads
 - FPKM: fragments per kilobase of exon per million fragments mapped

http://www.slideshare.net/mikaelhuss/rnaseq-differential-expression-analysis

The Usage

Demo: http://molas.iis.sinica.edu.tw/grch38/

All you need is an expression file

Input file

 A tab-delimited text file generated by other software (e.g. cufflink, EdgeR, RSEM) in ensembl transcript id (grch38 and grcm38)

New Submission

A Home Browse Projects ONew Submission

Submit 🗸 Clear All

New Submission

MOLAS About MOLAS Browse Projects New Submission Check Submitted jobs

There are 208244 transcripts annotated in human genome, ensembl grch38.78. In MOLAS, 197912 transcripts are in the database (transcripts of "small non-coding genes" are excluded. Link to Details)

197523 data entries are found in the uploaded file, in which 14 ensembl transcriptid (0.01%, 14/197523) can not mapped to MOLAS database. 197509 MOLAS database transcript id are mapped (99.8%, calculated by mapped id / molas id: 197509/197912)

EPKM file ton 5 lines :	operation			
				Modify FPKM Sample Name
#tracking	Sample_	Sample_	Sample_	Sampl 🜲
_id _/	1 //	2 //	3 //	e_4
ENST00000380075	0	0	0.909464	1.0386
ENST00000380071	320.788	208.653	269.647	421.71
ENST00000380079	160.909	71.0702	63.7214	0
ENST00000563164	11.2517	15.5313	7.45358	14.1989
ENST00000563166	0	0	0	1.99288

Select library:

Present Selected:				
Dataset				operation
Sample_1, Sample_2, Sa	ample_3, Sample_4			modify Odelete
Selecting Dataset:				
✓Sample_1	✓Sample_2	✓Sample_3	✓Sample_4	Update Reset

Project Profile

This project is a transcriptome study on grch38 reference genome (transcripts #:197523,library#:2)

Project Info

Project Name grch38 demo	(limit to 50 words)
Brief on this Project ?:	
grch38 demo	
Upload an website logo (image file in jpg,gif,or png format) 選擇檔案 未選擇任何檔案	
Name of Sub-directory: http://molas.iis.sinica.edu.tw/ grch38	?
Contact E-mail as Account:molas.iis@gmail.com	_
Password: ••••	
Open to Public:	

●No ■share this project data to my friends with this secret word:

?

Deployment Success

About MOLAS	Browse Projects	New Submission	Check Submitted jobs		
		Dear User:			
		You have complet The whole system Please check the v	ed the submission. There are 8 will be ready few minutes late website below to start your jou	3 libraries in your submission. er after data deployment. urney on data analysis.	
		http://molas.iis.	.sinica.edu.tw/grch38	Data Deployment Success!	
		Thanks for your us	ing our platform to deep your	research. MOLAS administrator	

Browse project and

http://molas.iis.sinica.edu.tw/grch38/

Fuzzy Search

Home Full-text search on Annotation tables Library Compare	Enrichment Analysis Clust	ering		
KEGG GlobelView		1		
Enter your keywords:	Show 10	 entries 	Search:	CSV
brca1		GeneName	A Description	KEGG +
Search : I GeneName I description I KEGG	BABAM1		Homo sapiens BRISC and BRCA1 A complex member 1 (BABAM1), transcript variant 2, mRNA.	
send reset	BABAM1		Homo sapiens BRISC and BRCA1 A complex member 1 (BABAM1), transcript variant 1, mRNA.	
	BAP1		Homo sapiens BRCA1 associated protein-1 (ubiquitin carboxy-terminal hydrolase) (BAP1), mRNA.	ubiquitin carboxyl- terminal hydrolase BAP1 [EC:3.4.19.12]
	BARD1		Homo sapiens BRCA1 associated RING domain 1 (BARD1), mRNA.	BRCA1-associated RING domain protein 1 [EC:6.3.2.19]
	BRAP		Homo sapiens BRCA1 associated protein (BRAP), mRNA.	BRCA1-associated protein [EC:6.3.2.19]
	BRAT1		Homo sapiens BRCA1-associated ATM activator 1 (BRAT1), mRNA.	
	BRAT1		SubName: Full=BRCA1-associated ATM activator 1; Flags: Fragment;	
	BRCA1		Homo sapiens breast cancer 1, early onset (BRCA1), transcript variant 6, non-coding RNA.	breast cancer type 1 susceptibility protein
	BRCA1		Homo sapiens breast cancer 1, early onset (BRCA1), transcript variant 2, mRNA.	breast cancer type 1 susceptibility protein
	BRCA1		Homo sapiens breast cancer 1, early onset (BRCA1), transcript variant 1, mRNA.	breast cancer type 1 susceptibility protein

Showing 1 to 10 of 21 entries (filtered from 38,841 total entries)

🔺 Previous Next 🕨

Pairwise Comparison

Total:17764 input gene symbol. hit:5382 used. nohit:12382 excluded. Heatmap

Search:

CSV

PDF

Select libra Show 10 entries

Hom	o Full toxt soar	Pathway name 🔶	Knumbers frequency	Background frequency	P-value 🔺	Genename associated to the term
Dynamic com		Protein processing in endoplasmic reticulum	128 out of 4307 knumbers	128 out of 4598 knumbers	0.00021	ATF6 BCL2
1. Se Pre	elect library: sent grouping: Pool	RNA transport	120 out of 4307 knumbers	120 out of 4598 knumbers	0.00035	AAAS CYFIP1
pool a: pool b:	Spliceosome	111 out of 4307 knumbers	111 out of 4598 knumbers	0.00064	BCAS2 CDC40 ▶	
 2. Select group: PoolA ∩ PoolB (# ∩ PoolA FPKM: >= ▼ PoolA Expressed only (F PoolA FPKM: >= ▼ 3. Select Analytic App 	Epstein-Barr virus infection	146 out of 4307 knumbers	147 out of 4598 knumbers	0.00064	AKAP8L AKT2	
	Cell cycle	105 out of 4307 knumbers	105 out of 4598 knumbers	0.00096	ABL1 ANAPC11	
 Show Gene List Functional enrichm GO 		Parkinson's disease	101 out of 4307 knumbers	101 out of 4598 knumbers	0.00126	APAF1 ATP5A1
send reset		Viral carcinogenesis	131 out of 4307 knumbers	132 out of 4598 knumbers	0.00160	ACTN3 ACTN4 ►

KEGG Pathway

Enrichment Analysis

Insert a list of interesting genes to see which pathway they are involved.

Home	Full-text search or	1 Annotation tables	Library Compare	Enrichment Analysis	Clustering
KEGG	GlobelView				
Enri	chment Ana	lysis			
1.Enter	genesymbol:(one id i	per line) example			
TRPA1					
VIL1 VTCN1		=			
WT1		-			
ZFP57	1.6				
Or uplo	ad from file:				
Choos	e File No file choser	downloa	ad example		
Save to	file:1389348774137	done!			
2.Select	: Analytic Approach:				
GO	0				
000					
send	reset				

KEGG Global View

KEGG Global View provide an canonical pathway-type overview of genes involved in a particular KEGG pathway.

			-	
Hom	Full-text search on Annotation tables	Library Compare	Enrichment Analysis	Clustering
KEG	G GlobelView			
	BR	ITE hierarchies (33	338)	
Netv	vork hierarchy (22563)			
KE	GG Orthology (KO) (20622)			
KE	GG modules (1941)			
Prot	ein families: metabolism (5182)			
Er	izymes (3786)			
Pr	otein kinases (484)			
Pe	ptidases (494)			
G	vcosyltransterases (214)			
	anultransferases (16)			
An	ano acid related enzymes (60)			
C	tochrome P450 (55)			
Prot	ein families: genetic information pro-	cessing (2696)		
Tr	anscription factors (1046)	(2000)		
Tr	anscription Machinery (280)			
Sp	liceosome (492)			
RI	bosome (199)			
Ri	bosome biogenesis (9)			
Tr	ansfer RNA biogenesis (203)			
Tr	anslation factors (51)			
Ch	aperones and folding catalysts (44)			
SN	IAREs (43)			
Ub	nquitin system (283)			
Pr	Uleasuffie (21)			
Prot	ein families: signaling and cellular or	OCESSES (2897)		
Tr	ansporters (371)	(2007)		
Se	cretion system proteins (17)			
G	Protein-Coupled Receptors (778)			
Er	zyme-linked receptors (66)			
Cy	tokine receptors (89)			
Nu	iclear receptors (48)			
lor	n Channels (284)			
G	P-binding proteins (184)			
Cy	tokines (12)			
CE	D molecules (794)			
Pr	oleogiyCans (15)	(96)		
G	ycan Binding Proteins (53)	1001		
0	Pathway name	*	frequence	4
lysis	s / Gluconeogenesis	36 / 9	90	
e cv	cle (TCA cycle)	22 / 5	54	
ise r	bosphate nathway	19/6	57	
, 50 p	and aluquiranata international	<u>10</u> / C		
use a	and glucuronate interconversions	<u>12</u> /5	00	
ose	and mannose metabolism	<u>18</u> /7	79	
ctose	e metabolism	<u>21</u> /6	64	
rbate	e and aldarate metabolism	<u>7</u> /37	7	
acid	l biosynthesis	<u>5</u> /30)	
acid	elongation	18/2	21	
acie	metabolism	20//	10	
a 1 +	a 10 of 317 antrias	231-		Deminus Nort
ıg i t	o to of 517 enules			rievious next

Demo

Hands on practice on MOLAS

- Build your own project
- Browse project and conduct a study

http://molas.iis.sinica.edu.tw/human_grch38_demo/

What to do if you have no replicates?

Suggestions from edgeR authors

- Be satisfied with a descriptive analysis, that might include an MDS plot and an analysis of fold changes. Do not claim a significance statistical analysis.
 - In edgeR (empirically): Simply pick a reasonable dispersion value, based on your experience with similar data, and use that for detecting differentially expressed transcripts.

0.4 human data (genetically "not" identical)

0.1 for "genetically identical" strains of model organisms

0.01 for technical replicates

• Simulation data: NOISeq

https://f1000research.com/articles/5-1438/v2

edgeR paper http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796818/ menu http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf

Genes with different transcripts.....

Gene Set Enrichment Analysis: a computational method that determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes).

Ref: Subramanian, Tamayo, et al. (2005, PNAS 102, 15545-15550)

the Molecular Signatures Database (MSigDB), a collection of annotated gene sets for use with GSEA software. Ref: Liberzon, et al. (2011, Bionformatics), Liberzon, et al. (2015, Cell Systems)

hallmark gene sets are coherently expressed signatures derived by aggregating many MSigDB gene sets to represent well-defined biological states or processes.

positional gene sets for each human chromosome and cytogenetic band.

curated gene sets from online pathway databases, publications in PubMed, and knowledge of domain experts.

motif gene sets based on conserved cis-СЗ regulatory motifs from a comparative analysis of the human, mouse, rat, and dog genomes.

Н

computational gene sets defined by mining large collections of cancer-oriented microarray data.

C5 GO gene sets consist of genes annotated by the same GO terms.

immunologic gene sets defined directly from microarray gene expression data from immunologic studies.

...... the degree to which a gene set is overrepresented at the top or bottom of a ranked list of genes.

...... Gene sets with a distinct peak at the beginning (such as the one shown here) or end of the ranked list are generally the most interesting.

An Expression DataSet D

..... g_N

hit

g4

(at least 15 members

observed in the DataSet D)

....

g₂ **g**₃

Gene Set S

N genes x k samples

List L

 g_1

Gene List L \rightarrow in ranked order L={g₁,g₂,g₃,g_N} and the correlation to phenotype C, i.e., r(g₁)=r₁

$$P_{\text{hit}}(S, i) = \sum_{\substack{g_j \in S \\ j \le i}} \frac{|r_j|^p}{N_R}, \text{ where } N_R = \sum_{g_j \in S} |r_j|^p$$

'henotype

$$P_{\text{miss}}(S, i) = \sum_{\substack{g_j \notin S \\ j \leq i}} \frac{1}{(N - N_H)}.$$

ES: max (Phit - Pmiss) from zero

Fig. 1. A GSEA overview illustrating the method. (*A*) An expression data set sorted by correlation with phenotype, the corresponding heat map, and the "gene tags," i.e., location of genes from a set *S* within the sorted list. (*B*) Plot of the running sum for *S* in the data set, including the location of the maximum enrichment score (*ES*) and the leading-edge subset.

Tamayo, et al. (2005, PNAS 102, 15545-15550)

a running-sum statistic

miss

- 🕨 H (hallmark gene sets, 50 gene sets) 🛙
- C1 (positional gene sets, 326 gene sets) 1
 - by chromosome: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
- C2 (curated gene sets, 4762 gene sets) 1
 - CGP (chemical and genetic perturbations, 3433 gene sets) 1
 - 🕨 CP (Canonical pathways, 1329 gene sets) 🖬
 - CP:BIOCARTA (BioCarta gene sets, 217 gene sets)
 - CP:KEGG (KEGG gene sets, 186 gene sets) 1
 - CP:REACTOME (Reactome gene sets, 674 gene sets)
- 🕨 C3 (motif gene sets, 836 gene sets) 🚺
 - MIR (microRNA targets, 221 gene sets) 1
 - TFT (transcription factor targets, 615 gene sets) 1
- C4 (computational gene sets, 858 gene sets) 1
 - CGN (cancer gene neighborhoods, 427 gene sets) 1
 - CM (cancer modules, 431 gene sets) 1
- 🕨 C5 (GO gene sets, 5917 gene sets) 🖬
 - BP (GO biological process, 4436 gene sets) 1
 - 🕨 CC (GO cellular component, 580 gene sets) 🖬
 - MF (GO molecular function, 901 gene sets)
- 🕨 C6 (oncogenic signatures, 189 gene sets) 🖬
- C7 (immunologic signatures, 4872 gene sets) 1

Gene Set: GGCGGCA_MIR371

Standard name	GGCGGCA_MIR371
Systematic name	M15158
Brief description	Genes having at least one occurence of the motif GGCGGCA in their 3' untranslated region. The motif represents putative target (that is, seed match) of human mature miRNA hsa-miR-371 (v7.1 miRBase).
Full description or abstract	
Collection	C3: motif gene sets MIR: microRNA targets
Source publication	
Exact source	
Related gene sets	
External links	
Organism	Homo sapiens
Contributed by	Xiaohui Xie (Broad Institute)
Source platform	HUMAN_GENE_SYMBOL
Dataset references	
Download gene set	format: grp text gmt gmx xml
Compute overlaps 🔋	(show collections to investigate for overlap with this gene set)
Compendia expression profiles 🛿	Human tissue compendium (Novartis) NCI-60 cell lines (National Cancer Institute)
Advanced query	Further investigate these 5 genes
Gene families 🔋	Categorize these 5 genes by gene family
Show members	(show 5 members mapped to 5 genes)
Version history	6.0: Renamed from GGCGGCA, MIR-371

See MSigDB license terms here. Please note that certain gene sets have special access terms.

http://software.broadinstitute.org/gsea/msigdb/cards/GGCGGCA_MIR371.html

http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C2

Shu-Hwa Chen

Institute of Information Science Academia Sinica, Taiwan 2018/12

Epigenetic Modification

 Epigenetic Modification: Reversible modifications on genome components to affect gene expression without changing the DNA sequence

Adopted from McEwen BS et al., Nature Neuroscience 18, 1353–1363 (2015)

Methylated Cytosine: the Fifth Base

The most common and stable epigenetic marks in nucleotide level

SAH

- Involved in
 - Genomic imprinting
 - Cell Fate Determination / Reprogramming
 - Transposon genes silencing

- In vertebrates, 1-6% of genomic cytosine are methylated
- In plants, the proportion of methylated cytosine is even higher
- But.....

Whole Genome Shotgun Bisulfite Sequencing

Bisulfite Conversion

Reproduced and modified from Fig 1 in Curr Protoc Nucleic Acid Chem (2008) Chapter 6: Unit 6.10.

Mapping BS-Seq Reads to Reference Genome

Difficulty to Access BS Seq Data/ Methylome

Complicated Contents

Visualization

		YOLGMC
200 6 62713.accep	ted_hits.sorted.bam	
Left alignment Read name = SRR364352.1970211	Right alignment Read name = SRR364352.1970211	
Landam + edtXV (169, 237 Algenese start = 106, 125 (+) Cigar = 804 Mapping equally = 90 Sociedary = no Sociedary = no Falled Cer = no The second start = 100 Marcine and Sociedary =	$\label{eq:constraints} \begin{split} & \mbox{dense} teth V \mbox{id} 237 \\ & \mbox{dense} tat = 102 \mbox{dense} 148 \\ & \mbox{dense} tat = 102 \\ & \mbox{dense} tat =$	

http://symbiosis.iis.sinica.edu.tw/epimolas/molas.html

The Workflow

TEA The epigenomic platform for Arabidopsis

Reference Genome

• Scored gene / promoter: # observed bases >=5

X = promoter or gene body

- Observed event for each C: >=4
- Scored gene / promoter: # observed bases >=5
- Supporting Mapper: BS-Seeker2 and Bismark

TEA Website

http://tea.iis.sinica.edu.tw/tea/molas.html

DNA methylation is known as an important regulation of genome function. It has effects on the binding affinity between DNA and DNA binding proteins, resulting to varies of biological results. DNA methylation can be a dynamic process for altering gene activity temporarily, or be long-term changes upon cell differentiation/ cell fate commitment. It plays roles in epigenetic regulation on genome functions. Using bisulfite conversion of genomic DNA combining with next-generation sequencing (BS Seq), the 5-mehtylcytosine level of all available C residues in the whole genome scale can be detected.

To fasiliate the access of the BS Seq data for model plant Arabidopsis researchers, we build the TEA workbench. Present compatible reference genome/ annotation in TEA is TAIR10. Please check gtf section for details. Mapping reports from two popular bisulfite sequence mapping programs, *.csmap from BS Seeker 2, and *.cx_report.txt from Bismark, are supported.

We adopt mtable, a summarized score to indicate the methylation level of three different 5-methylC sequence contexts (CG, CHG, CHH) for each gene. Please check the BS Seq mapping process to get a quick overview if you are not familiar with the mapping process.

Project Summary

http://tea.iis.sinica.edu.tw/tair10_demo_new/

Project Briefs

Datasets from DOMAINS REARRANGED METHYLTRANSFERASE3 controls DNA methylation and regulates RNA polymerase V transcript abundance in Arabidopsis study http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311829/

Project Name: Demo published Arabidopsis dataset

|--|

Sample Label	Uploaded IDs	Mapped IDs	mapped in tair10 geneid
Col_1	33602	100.0% (33602/33602)	100.0% (33602/33602)
Col_2	33602	100.0% (33602/33602)	100.0% (33602/33602)
drm2	33602	100.0% (33602/33602)	100.0% (33602/33602)
drm3	33602	100.0% (33602/33602)	100.0% (33602/33602)
nrpe1	33602	100_0% (33602/33602)	100.0% (33602/33602)
	ing rate	·51	

Check the gtf version

Project Summary

http://tea.iis.sinica.edu.tw/tair10_demo_new/

We further summarized the number of analyzable genes/promoters for different methylated C sequence contexts each sample :

	CG		СНБ		СНН	
Sample Label	promoter	gene	promoter	gene	promoter	gene
Col_1	28260	33387	28252	33437	28290	33485
	84.0%	99.0%	84.0%	99.0%	84.0%	99.0%
Col_2	28233	33342	28228	33390	28281	33443
	84.0%	99.0%	84.0%	99.0%	84.0%	99.0%
drm2	28160	33207	28137	33222	28207	33320
	83.0%	98.0%	83.0%	98.0%	83.0%	99.0%
drm3	28183	33244	28160	33276	28191	33321
	83.0%	98.0%	83.0%	99.0%	83.0%	99.0%
nrpe1	28291	33424	28288	33462	28326	33508
	84.0%	99.0%	84.0%	99.0%	84.0%	99.0%
lissing Data ?! Check the (1) read mapping rate (2) throughput						

Set the searching criteria

✓ send	${old C}$ reset					Get the result
Showing 1 to 8 of 8 entries (filtered from 33,602 total entries)Show 10 • entries Search:			CSV Save as genelist			
GenelD 🔺	Genesymbol 🔶	GeneType 🔶	Chromosome 🔶	Description 🔶	KEGG 🔶	
AT1G14660	NHX8	protein_coding	1	Sodium/hydrogen exchanger 8 [Source:UniProtKB/Swiss- Prot;Acc:Q3YL57]		

Gene Central View

AT5G27150: NHX1

Gene: NHX1

Gene Central View

NHX1 Sodium/hydrogen exchanger 1 [Source:UniProtKB/Swiss-Prot;Acc:Q68KI4]	
Ensembl ID	Gene_Biotype
AT5G27150	protein_coding
Synonym/ prev Symbol	chromosome location
	ch5: 9,553,438-9,557,513 forward strand.

The methylation level of NHX1 in all libraries

Layout 1: by sequence type Layout 2: by location

Layout 1

Main categories in methyIC sequence contexts (CG/CHG/CHH)

Methylation Level						
AT5G27150	pmt_CG	gene_CG	pmt_CHG	gene_CHG	pmt_CHH	gene_CHH
Col_1	0.380513	0.366392	0.303947	0.013275	0.262383	0.017167
Col_2	0.357317	0.344938	0.285128	0.012076	0.228465	0.012457
drm2	0.375405	0.386733	0.186757	0.007299	0.015115	0.009421
drm3	0.370258	0.362956	0.305405	0.015357	0.19905	0.019717
nrpe1	0.301026	0.32378	0.018378	0.012773	0.021895	0.012926

The methylation level of NHX1 in all libraries

Layout 1: by sequence type Layout 2: by location

Layout 1

Main categories in methyIC sequence contexts (CG/CHG/CHH)

Methylation Level						
AT5G27150	pmt_CG	gene_CG	pmt_CHG	gene_CHG	pmt_CHH	gene_CHIH
Col_1	0.380513	0.366392	0.303947	0.013275	0.262383	0.017167
Col_2	0.357317	0.344938	0.285128	0.012076	0.228465	0.012457
drm2	0.375405	0.386733	0.186757	0.007299	0.015115	0.009421
drm3	0.370256	0.362956	0.305405	0.015357	0.19905	0.019717
nrpe1	0.301026	0.32378	0.018378	0.012773	0.021895	0.012926

Measures of Methylation

Data Analysis Modules

http://tea.iis.sinica.edu.tw/tea/access_project.html

Find Genes by Value

DMGs : Select differentially methylated genes by the interested methylation score

Threshold : Select genes by a cutoff value on the methylation score

Gene List and Data Visualization

Gene List

Home Full-text search DMGs mC Threshold Import Genelist KEGG GlobalView Gene List Analysis

Show	5 • entries		Search:		
View	Gene List Name 💧	Generate Value	Note 🔶	Time 💡	Operation 🔶
	intersection	Gene list analysis-venn 242 genes seleced from DMGs module (Ctl_drm2) N 263 genes seleced from DMGs module (Ctl_poIV) N 50 genes seleced from DMGs module (Ctl_drm3) totalgene:21	1 units dispetitionican d'alla (2014) (2017) 9 units dispetitionican de la constantia (2017) 9 units de la constantia (2017) 10 prese asiana d'ana (312) anatán (2017) 10 prese asiana d'ana (312) anatán (2017)	2018-08-04 15:18:58	find delete ✓ edit name ✓ edit note ± downloadgenelist ± downloadsvg
	242 genes seleced from DMGs module (Ctl_drm2)	DMGs poola:Col_1,Col_2 poolb:drm2 select ALL, >= 0.15 GeneTypeconstrains:protein_coding.pseudogene.rRNA.tRNA.snRNA.snoRNA.miRNA.ncRNA.transposable_element Chromosome:1,2,3,4,5,Mt,Pt Search: totalgene:242		2016-06-04 15:15:34	
	263 genes seleced from DMGs module (Ctl_poIV)	DMGs poola:Col_1,Col_2 poolb:nrpe1 select ALL, >= 0.15 GeneTypeconstrains:protein_coding.pseudogene.rRNA.tRNA.snRNA.snoRNA.miRNA.ncRNA.transposable_element Chromosome:1,2,3,4,5,Mt,Pt Search: totalgene:263		2018-08-04 15:14:55	delete edit name edit note downloadgenelist
	50 genes seleced from DMGs module (Ctl_drm3)	DMGs poola:Col_1,Col_2 poolb:drm3 select ALL, >= 0.15 GeneTypeconstrains:protein_coding.pseudogene.rRNA.tRNA.snRNA.snoRNA.miRNA.ncRNA.transposable_element Chromosome:1,2,3,4,5,Mt,Pt Search: totalgene:50		2018-08-04 15:12:44	
	11 genes are stored from import genelist module	Import Genelist Search: totalgene:11		2016-06-04 14:26:12	delete Image: edit name Image: edit note Image: edit name
Showing	g 1 to 5 of 5 entries				Previous Next

2.Select Analytic Approach: Show Gene List pmt_CG • Plot on the location of genes on chromosome map Show Venn Diagram Calculate GO term enrichment default p value cutoff 0.1 • Calculate KEGG pathway enrichment Draw heatmap with 2D clustering (Max. 3000 GeneID) pmt_CG •

Questions?

Other Issues ?

- Experiment Design? Biological Replicates >>> Technical Replicates
- Library Protocols:
 - Stranded or not?
 - PolyA tailed or rRNA depletion?
 - Have reference genome? Novel transcripts? Fusion transcripts?
- Special protocols that need extra bioinformatical works?
- Trimmed read length? Low complexity repeats? Other sources of contamination?

A Typical RNA-Seq Experiment

Intensive analysis to Interpretate Biological Meanings

http://www.nature.com/nrg/journal/v10/n1/full/nrg2484.html

Nature Reviews | Genetics